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Tokyo, 158 Japan 

Received 11 February 1976, in final form 5 April 1976 

Abstract. The second quantization method is applied to classical many-particle systems. 
Statistical quantities such as free energy and time correlation functions are expressed in 
terms of creation and annihilation operators. The method is especially useful for the system 
in which the number of the composite molecules changes with time, e.g. the system including 
chemical reaction. 

1. Introduction 

The second quantization method is a very convenient way of treating quantum 
many-body problems. Almost all quantum many-body theories are written in this 
representation (Abrikosov et a1 1963). The method, however, is not limited to 
quantum systems. In fact, creation and annihilation operators +bt(r) and +(r)  can be 
introduced independently of the quantum conditions; they are operationally defined by 
the following commutation relations: 

together with the definition of the vacuum state IO), 

Planck’s constant h does not appear in these expressions. Therefore it is possible to 
introduce these operators into classical many-particle systems. The purpose of this 
paper is to develop such a formulation. 

The present formulation differs from the theory recently developed by Martin et a1 
(1973, see also Phythian 1975, 1976). They start from the differential equation for the 
operators under consideration, but we start from the time evolution equation for the 
probability distribution function. The present formulation resembles more closely the 
standard operator formalism of quantum field theory (de Boer 1965). To clarify this 
point, we first give a rough outline of our method. 

Consider a system consisting of N identical molecules. Let qi be the set of 
coordinates specifying the state of each molecule: qi may be the position and momen- 
tum coordinates and, if necessary, other coordinates describing the internal degrees of 
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freedom. Let us consider the problem: given the time evolution equation for the 
probability distribution function f N ) ( q l ,  qz, . . . q N ;  t )  =f (q ; t ) ,  N )  N 

N )  N together with the initial conditionf (q ; 0), calculate the mean value of some physical 
quantity A(qN)  at time t: 

(4) N A(t) = J dqNA(qN)fN)(qN; t ) ;  dq = dq1 dqz . . . dqN. 

We shall show that A(t) is expressed in terms of the creation and annihilation 
operators t,bt(q) and +(q) as 

A(t) = (sum[&++, 41 exp(-@[CJ/+, 4 1 t ) l ~  = ON, ( 5 )  

where A[++, I)] and @[@+, $3 are the 'quantum' operators which are constructed from 
A and 3(N) just as in quantum field theory, [F(t  = 0)) is a 'quantum' state determined by 
the initial distribution function f"'(qN; 0), and (sum1 is given by 

(sum1 = (01 exp ([dq w) . (6) 

In general, the distribution function f"'(qN; t) corresponds to a quantum state, 
physical quantities to quantum operators, and the operation of taking the average is 
equivalent to that of taking the scalar product with the state (suml. 

From the practical viewpoint, the second quantization representation may not 
be a very useful one for the usual classical systems, though some of the formal 
discussions are simplified. The difficulty in calculating equation (5 )  is almost the same as 
equation (4). However, there are cases where the second quantization represen- 
tation is clearly advantageous. A typical example is the system including chemical 
reaction. In that system, the number of the composite molecules changes with time 
owing to the reaction. The time evolution operator includes the terms describing the 
transition between states containing different numbers of molecules. Therefore, for the 
complete statistical description, the set of distribution functionsf"), fN-'), . . . must be 
considered, and analyses must be made in the Fock space. For this system, a serious 
difficulty arises in the conventional representation: to define the distribution function 
f N ' ( q N ;  t ) ,  we must label all molecules existing in the system; however, the procedure 
of labelling becomes complicated if the molecules are created or destroyed in the course 
of time. (As a matter of fact, this difficulty can be removed by introducing a new 
definition of the distribution function (see 0 2), but even in that case the time evolution 
equation is still very complicated (see equation (51)).) 

The second quantization method removes these difficulties. It is the method most 
suitable for treating the Fock space, and it does not require the labelling of molecules. 

Actually, the present work is motivated by the problem of chemical reaction. The 
chemical reaction is a prototype of those problems for which the composite elements 
change with time through birth and death processes, or fusion and fission processes. 
Therefore the method developed here may be applied to a rather wider class of 
problems. In this paper, however, we do not discuss these applications, but restrict 
ourselves to the general scheme of formulation. An actual calculation and discussion of 
the chemical reaction problem is given in a separate paper (Doi 1976). 
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2. Specification of the states 

First we clarify the meaning of ‘state’ used in this paper. We consider a system 
consisting of N identical molecules. In the conventional description, all the molecules 
are numbered as 1 ,2 ,  . . . N, and the state (91, q2, . . . q N )  = qN is defined as the state for 
which the ith molecule is located at qi (i = 1,2 ,  . . . N). Following this definition the 
states (ql, q2, . . . qN)  and (q2, ql, . . . qN)  are different. The conventional distribution 
function f”’(q”; t) is normalized as 

IdqNfN)(qN; t)  = 1. (7) 

However, if the molecules are identical, we need not distinguish the states 
(ql, 42, . . . qN)  and (q2, ql, . . . qN)  etc, because they are physically equivalent. In this 
paper we regard them as the same states. More generally, we define the system to be in 
a state (ql, 92,  . . . qN)  = qN if the system consists of N molecules, and if these molecules 
are located at ql, q2, . . . qN. Let F”’(qN;  t )  be the probability of finding the system in a 
state qN of this definition. F”’(qN; t )  is related to f N ’ ( q N ;  t) as 

permutations 
of q, 

where the summation is taken over all permutations of the arguments of f N ) ( q N ;  t ) .  
Clearly F”’(q”; t) is symmetric with respect to its arguments. 

The normalization of F”’(qN; t) is different from that off”’(qN; t). If F”’(qN; t )  is 
integrated over all possible values of q 1 , q 2 ,  . . . qN, the same state (ql, q2, . . . qN) ,  
(92, q l ,  . . . qN)  etc is counted N! times. Such overcounting is avoided if the integration 
is taken under the condition q1 S q 2 S . .  .SqN.  (If q, stands for the set of variables 
(q i l ,  qi2, . . .), the inequality should be understood as ql l  s 921 S .  . . s qN1.) The normali- 
zation of F”’(qN;  t) is thus 

We shall denote the integral 5 dqN under the condition q1 S q2 S .  . . s qN as 5 dQN. 
Evidently the following identity: 

IdQ” .  . .=I dq “...=-I l N  dq . . .  
q,sq*s ... S q N  N !  

holds if the integrand is a symmetric function of 4,. The normalization con’dition (9) is 
also derived from equations (7), (8) and (10). 

If the number of molecules is not fixed, we must consider a set of probability 
distribution functions {F”’(t) ,  F’”’(ql; t),  F”’(q2; r )  . . .} = F ( t ) .  These functions are 
normalized as 

Equation (9) is a special case of this equation. 
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3. Second quantization representation 

To the distribution function F(t) ,  we assign a ‘quantum’ state (F( t ) )  as 

where 10) is the vacuum state: 

W 1 0 )  = 0, (ol*t(q) = 0, (13) 

C+(q), +(IP(q’)1 = N q  -99, 

and Gt(4) and +(q) are creation and annihilation operators which satisfy the commuta- 
tion relations 

[+:SI, +(q’)I= [iLt(4), J/t(9’)1 = 0. (14) 

For simplicity, we use the abbreviation 
N -  19 >= 141, q 2 ,  . * qN)’ +t(ql)+t(q2) e . * J/+(qN)IO), 

(qNl ~ ( o l # ( q l )  . * (C’(qN)* 
(15) 

The following identities can be readily shown from equations (13) and (14): 

(914’) =a -9’) 

permutations 
of qz 

Then from equations (12) and (16) 

F’.V’(qN; t )  = (qNIF(t)). (17) 

Equations (12) and (17) indicate that there is a unique correspondence between a set of 
functions F={F”’ ,  F”’, . . .} and the quantum state IF). Note that F need not be a 
distribution function but may be a general set of functions provided its components are 
symmetric functions. 

Next we consider a linear operator A which transforms F = { F ’ O ’ ,  F”’, . . .} to 

FA = AF. (18) 
We assign a quantum operator A to A in such a way that IFA) is equal to AlF) or, 
equivalently, that 

FA ={$(’, pi’, . . .}: 

PT’(qN) = ( q N ( A  IF) (19) 

p:’(qN) = A“’(qN)F”’(qN), (20) 

for any IF). For the pertinent system of identical molecules, most operators are written 
in the following form: 

with 

where Al(q , )  (or A2(qi, q j ) )  is a linear operator depending only on qi (or qi and qj ) .  
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Examples of such operators are: the Liouville operator 2, 

(where m is mass, pi ,  ri are momentum and position coordinates respectively and 
u(ri - r j )  is the interaction potential); and the number density operators n ( r ) ,  n(r,  r ’ ) ,  

n ( r ,  r ‘ ) =  1 6 ( r - r l ) 6 ( r ’ - r j ) .  
I S i Z j S N  

For this type of operator, 2 is found to be 

A = A 1 + & + .  . . , 

These expressions are just the same as those in quantum field theory. Equation (24) is 
readily verified by use of equations (13) and (14), for example, 

If the system includes chemical reaction, we must treat operators connecting the 
states with different numbers of composite molecules. Such operators will be discussed 
in P 5 .  

Next we introduce states la) and (a1 defined by 

I 4  = exp ( a  I d q  J“) IO), (a1 = (01 exp( a I d q  w) , ( 2 7 )  

where a is a real number. These states will appear frequently in the following 
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discussions. The state la) is a coherent state introduced by Glauber (1963). An 
important property of (a) is that it is an eigenstate of the operator @(9): 

@(q)la) = ala), (al@+(q) = a b ( .  (28) 

These relations are justified by use of equations (13) and (14). 
The state la = 1) is particularly important. Consider the scalar product 

(a = l /F)=(O/exp(  [dq@(q))lF). (29) 

Expanding exp(j dq @(4)) and using equation (17), we have 

Thus the operation of taking the scalar product between (a = 11 and IF) is equivalent to 
the operation of summing up all the states, i.e. 

(a = 11.. .)w C J d o N . .  . . 
N 

For this reason, we may write (a = 11 as (suml. As a special case of equation (28), we 
have 

(suml$+(q) = (suml. (32) 
If F( t )  denotes the distribution function, the normalization condition (1 1) is simply 
written as 

(sum[F(t)) = 1. (33) 
The mean value of some physical quantity A is expressed by use of (suml. As is 

understood in the example of the density operator, any physical quantity can be 
regarded as an operator in the sense of equation (18). Thus the mean value is given by 

A(t) = N=O f [dONA”’(qN)F”’(qN; t )  = (sumlAIF(t)). (34) 

Let @be the quantum operator associated with the time evolution operator $3. From 
the equation 

(35) 
a 
at 
-IF(?)) + 3IF(t))  = 0 

lF(t))  = exp(-Gt)IF(t = o)), 

A(t) = (sumlA exp(-&)IF(r = 0)). 

IF(?)) is solved as 

(36) 

(37) 

then equation (34) is rewritten as 

In particular, the equilibrium time correlation function is written as 

where leq) denotes the ‘quantum’ state corresponding to the equilibrium distribution 
function. Examples of leq) will be given in the next section. 
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Equations (37) and (38) are the final results of our formal discussion. Operators A, 
and @ are constructed from equation (24), and the states IF(t = 0)) and leq) are from 

equation (12). Thus the statistical averages are calculated by manipulatims of quantum 
operators +‘(q) and +(q) .  

We can easily generalize the above discussion to the case when the system includes 
several kinds of molecules. Consider a system consisting of two types of molecules A 
and B. The distribution function of this system has the form 
F”’M)(qAI, . . . qAN, qB1, . . . qBM) = F”,M’(qz, 4:)). The second uantization represen- 
tation is constructed in terms of the operators +/a(q), +A(q), +B(q)  and (ClB(q) in the 
almost same manner as described above. An example will be given in 5 6 .  

7 

4. Example 1: classical dynamical system 

As an example of the above formulation, let us consider a many-particle system obeying 
classical dynamics. The time evolution operator of this system is a Liouville operator 
(22). The associated quantum operator is immediately obtained from equation (24): 

3 = %re, + y i n t  

where 

Next we discuss the second quantization representation of the equilibrium state. 
First we consider the canonical ensemble of the N-particle system. The equilibrium 
distribution function for this ensemble is 

with 

where 2, is the normalization constant determined by equation (9): 

Z - - drN dpN exp(-p@”). N - N !  ‘ I  
This indicates that ZN is equal to the partition function except for the factor ( 2 ~ h ) - ~ ~ .  
The corresponding quantum state is 

1 h, N)=- ZNN! l d r N  dpN exp(-p@N’)l(rp)N). (43) 
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This equation is rewritten into a more compact form: by using the relation 

For many purposes, the grand canonical ensemble is more convenient. The 
distribution function for this ensemble is 

( N  = 0, 1, . . .), (46) 
A 

F’:’,((rp)N) = - e x p ( - - p ~ ” )  
2, 

where A = exp(p/kBT) ( p  is the chemical potential) is the fugacity and 2, is the grand 
partition function. The associated quantum state is 

1 
2, 

= - exp(-p%> exp ( A Jdr dp +‘(r, p ) )  IO) = 2,’ exp(-P%’)lA). 

(47) 

From the normalization condition ( 3 3 ) ,  the expression for the grand partition 
Here we have written exp(A 5 dr dp ++(r,  p ) ) [ O )  as / A )  following the notation (27). 

function is obtained as 

2, = ( A  = l/exp(-P%”)lh). (48) 

The expression for the equilibrium time correlation function is written compactly as 

~ (A = 1IA exp(-L?r)B exp(-j&)lA) 
A(t)B(O) = fl (49) 

Although these formal expressions have simple forms, actual calculations are, of 
course, very difficult. To calculate these expressions, we must have recourse to the 
perturbation technique or to some decoupling approximation. We can reproduce the 
conventional formulae starting from these expressions, but we shall not discuss it here. 
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5. Chemical reaction 

Let us now consider systems including a reaction process. From the viewpoint of 
quantum mechanics, chemical reaction is a complicated inelastic collision process, and 
its general treatment does not seem well established. Therefore, here we take a simple 
stochastic treatment for the reaction process: we assume that reaction takes place 
instantaneously with some transition probability and that the process is described by an 
appropriate Markoffian master equation. 

Let us consider the reaction system, 

A+A+B. (50) 

We introduce an intrinsic reaction rate R (qA, 4k + qB) defined as: R (qA,  qk + qB) dt is 
the probability that a pair of A molecules located at qA and qk react in a time interval dt, 
producing B molecules at 9 B .  

For this system, the time evolution equation for the distribution function 
F'N9M'(q:, qg; t) becomes: 

a -P""'(q:, qf; t )  + 9hN*M)F(N3M)(qE, qg; t )  
at 

(q:qAqk, q g / q B i ;  l ) *  (51) 
$N+Z,M-l) 

Here 9bN9"' is the time evolution operator in the absence of chemical reaction: 9LN3."' 
may be a Liouville operator, or the diffusion operator (see the example of the next 
section). The right-hand side of equation (51) represents the balance of the probabilit 

to (q:/qA,qAj, q f q B )  (q:/qAfl& stands for the state that the molecules at qAi and qAj 
are removed from the state q A ,  and &qB stands for that the molecule at q B  is added to 
the state 9 B y  i.e., ( q A / q A i q A j ) = ( q A l ,  qAz, . . . qAi-1,  q A i + l ,  . - q ~ j - 1 ,  q A j + l ,  . . q m )  
a: ( & q B ) l  (qB1,  qB2 ,  . . . qBM, qB)). The second term represents the transition from 
( 4 A q A q k ,  q B / q B , )  to (q:, qg) .  In the second term, the factor 1/2 is needed to 
compensate the double counting of the state (924Aqk) = (9:qiqA). 

due to chemical reaction: the first term represents the transition from the state ( q z ,  q B )  Ix 

M N 

The corresponding quantum operator for equation (51) is 

g=g0+gr. (52)  

gr = grl + grz 

The operator go is constructed in the manner described previously. The reaction part 
gr is given by 

(53) 

@rl = jdqA dqk dqBR(qA, qk-) qB)l(la(qA)l(la(qk)l(lA(qA)l(lA(qk) (54) 
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The expression (54) is readily verified because the first term of the right-hand side of 
equation (51) has the form of A2 in equation (21). To verify equation ( 5 9 ,  we use the 
relation 

M 

1 = 1  

N M f  (qA, qB l$B(qB)$A(qA)$A(qk) = (qgqAqk, &/qBi)6(qB-qBi)* (56)  

Thus 

The simple forms of equations (53)-(55) may be compared with equation (51) in the 
conventional representation. This simplicity is precisely the advantage of the second 
quantization representation. 

As is understood from the above example, the reaction operator gr consists of two 
parts: the ye ra to r  gr1 does not change the number of composite molecules, but the 
operator Yr2 does change, destroying reactant molecules and creating product 
molecules. 

At first sight, it may seem that only the operator Gr2 is needed to describe the 
reaction process; however this is not true. The operator gr1 dt  represents the probabil- 
ity that the system does not make a reactive transition in a time interval dt. These two 
operators are necessary to insure the normalization of F(t ) .  To see this, we show 

(58)  
a 
at 
-(sumlF(t)) = -(sum(GlF(t)> = 0. 

Noting (suml@olF(t)) = 0 and using the relation (32), we have 

a 
-(sumIF(t)) = -(sumlgr:,IF(t)) 
at 

= -1 dqA dqB R(qA, qa~qB)(suml$A(qA)I//A(qk) 

- @A(qA)$A(qk)lF(t)) = 0. (59) 
Thus the normalization of IF(t)) is assured. Note that if @rl is excluded, equation (58) 
does not hold. 

In a similar manner, we can construct the reaction operator for the general type of 
reaction. The results may be almost self-evident from the above discussions. Examples 
are listed below: 

(i) For the reaction between different kinds of molecules, A + B + C :  

% = jdqA dqB dqc R (qA, qB qC) 

X{I//a(qA)I//A(qB)$A(qA)$B(qB) - I//A(qA)$B(qB>$&(qC)). 

Note that the factor 1/2 does not appear in this case. 
(ii) For the unimolecular reaction, A +  B: 
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(iii) For the decomposition reaction, A + B + C: 

If the system includes many types of reaction processes concurrently, we must sum 
up the pertinent reaction operators. 

For the system including only irreversible reaction, a simplification is possible. In 
this system, if the product molecules do not affect the motion of the reactant molecules, 
the time evolution equation is closed within the equation for the distribution function of 
the reactant molecules. For exam le, in the reaction A + A + B ,  we need not consider 
the distribution function F”’M’(9A, 9g; t )  but need only F”’(q2; t) provided we are 
interested only in A molecules, and provided the interactions between A and B are 
neglected. In that case, the reaction operator (53)- (55)  is reduced to 

R 

where 

is the reaction rate with which A molecules located at qA and q; react producing B 
molecules at some unspecified position. 

6. Example 2: diffusion controlled reaction in liquid media 

As an example, we consider a Brownian particle system undergoing A+ A + B type 
irreversible reaction. We assume that the Brownian motions of the molecules are 
independent of each other. Thus we may discuss only the distribution function of A 
molecules (therefore suffix A is dropped). 

In the absence of reaction, the distribution function of the A molecules obeys the 
diffusion equation, 

where D is the diffusion constant and r is the position of the A molecule. The 
corresponding diffusion operator becomes 

go = -D [dr +‘(r)V2+(r). 

The reaction operator (63) is written as 

(66) 

gr = $ [dr dr’ R(r  - r‘){+’(r)+’(r’)+(r)+(r’)  - +(r)+(r’)}. (67) 
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We now consider the probability PN(t) that the system includes N A molecules at 
time t. By definition, 

P N ( f ) =  I dRNF(rN;  f ) = -  N !  ' I "  dr  (r (F( t ) ) .  

The moment generating function of P N ( f )  is thus given by 

with 

Suppose that initially A molecules are uniformly distributed in a volume V, then the 
initial distribution function is 

(71) 
N !  F' N )  (r N ; t=O)=-P ( t = O ) .  
vN 

If pN(f = 0)  is the Poisson distribution function with mean value cV, i.e. 

the initial state becomes 
C N  N -( I d r  +'(r)) 10) = e-cv/c) lF(t = 0))  = e-cv 

N = O  N !  

with 

IC) = exp( c jdr 4%)) IO). 

(73) 

(74) 

From equations (69) and (73), P(a,  t )  is compactly written as 

~ ( a ,  t )  = (a1 exp(-(g0+ @Jt)lc> e-'". (75) 

This equation is the starting point of our analysis of diffusion-controlled chemical 
reaction which will be reported in a separate paper (Doi 1976). Note that the 
evaluation of equation (75) involves a difficulty of many-body problems because gr 
contains a term such as ++(~)+'(r')+(rf)+(r). 

8. Conclusion 

It is shown that classical many-particle systems are conveniently described by creation 
and annihilation operators. Since the starting point of this formulation is the general 
time evolution equation for the distribution function, the system need not be a 
dynamical system, but may be one described by some statistical master equations. This 
representation is shown to be particularly useful for the system including chemical 
reaction. 
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Though the present discussion is limited to the derivation of the formal expressions 
for the quantities which we are interested in, it can be shown that these expressions are 
convenient starting points for the perturbation analysis. An example of such an analysis 
is given in the following paper (Doi 1976). 
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